首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220867篇
  免费   16512篇
  国内免费   8371篇
电工技术   11584篇
技术理论   15篇
综合类   12594篇
化学工业   35695篇
金属工艺   13481篇
机械仪表   13594篇
建筑科学   14118篇
矿业工程   5950篇
能源动力   5440篇
轻工业   12273篇
水利工程   4135篇
石油天然气   13723篇
武器工业   1486篇
无线电   23133篇
一般工业技术   32915篇
冶金工业   13938篇
原子能技术   5489篇
自动化技术   26187篇
  2023年   2963篇
  2022年   5199篇
  2021年   7979篇
  2020年   6167篇
  2019年   5316篇
  2018年   6659篇
  2017年   7288篇
  2016年   6659篇
  2015年   7695篇
  2014年   9988篇
  2013年   12070篇
  2012年   12923篇
  2011年   13963篇
  2010年   12157篇
  2009年   11622篇
  2008年   11480篇
  2007年   10951篇
  2006年   10353篇
  2005年   8869篇
  2004年   6737篇
  2003年   6730篇
  2002年   7068篇
  2001年   6263篇
  2000年   5187篇
  1999年   4866篇
  1998年   3741篇
  1997年   3186篇
  1996年   2987篇
  1995年   2525篇
  1994年   2048篇
  1993年   1684篇
  1992年   1546篇
  1991年   1327篇
  1990年   1278篇
  1989年   1160篇
  1988年   1036篇
  1987年   910篇
  1986年   822篇
  1985年   745篇
  1984年   724篇
  1982年   686篇
  1981年   678篇
  1979年   740篇
  1978年   779篇
  1977年   741篇
  1976年   755篇
  1975年   713篇
  1974年   720篇
  1973年   723篇
  1972年   705篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
Because of its ability to change optical absorption dynamically by applied electric field, nickel oxide (NiO) is a promising anodic material in smart windows, which can improve energy conversion efficiency in construction buildings. Although many works have achieved high electrochromic performance with different method. The underlying mechanism is still not fully investigated. In this article, we prepared the NiO films with large specific surface area and high stability by electron beam evaporation. X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to figure out the surface morphology and composition of as-deposited films. Afterwards, the electrochemical properties and optical performance of the prepared NiO films were investigated. On this basis, the origin of surface charge was fully analyzed by cyclic voltammetry and diffusion coefficient test. These experimental and theoretical results firmly confirm that both the surface reaction and capacitive effect bring about the excellent EC performance in NiO films. These results not only provide clear evidence about electrochemical kinetics in NiO films, but also offer some useful guidelines for the design of EC materials with higher performance and longer stability.  相似文献   
3.
Two types of spherical zirconyl oxalate aqueous sols were successfully customized by a reverse micelles-mediated aqueous sol-gel process, and the sols were sequentially spin-coated on porous supports to prepare ZrO2 loose/tight bilayer ultrafiltration membranes. After three times of spin-coating process, a defect-free ZrO2 loose ultrafiltration membrane with pure water permeability of 110.5 ± 2.25 L m?2 h-1 bar-1, molecular weight cut-off (MWCO) of 16.5 kDa and excellent rejection of up to 97.5 % for bovine serum albumin was fabricated. Then, the loose ultrafiltration membrane was used as a substrate to prepare ZrO2 tight ultrafiltration membrane. Performances of tight ultrafiltration membrane regarding to permeability, retention of polyethylene glycol and treatment of dyes wastewater were evaluated. The tight ultrafiltration membrane with a thickness of 200 nm exhibited a pure water permeability of 22.5 ± 0.3 L m-2 h-1 bar-1 and MWCO of 1150 Da. Additionally, the rejections of methyl red and methyl orange by the tight ultrafiltration membrane were both <65 %, while of alizarin red, direct red, bromocresol green and methyl blue achieved maximum values of 98.5 %, 99.2 %, 99.5 % and 99.6 %, respectively. The fouled membranes could restore the virgin performance for reuse by cleaning and low-temperature calcination.  相似文献   
4.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
5.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
6.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
7.
Atomic Energy - The physical aspects and main results of reactor tests of a two-stage core consisting of fresh fuel assemblies and a significant number of fuel assemblies from the previous core,...  相似文献   
8.
Protection of Metals and Physical Chemistry of Surfaces - Impedance spectroscopy was used to study the adsorption of the IFKhAN-92 inhibitor, a triazole derivative, on cathodically polarized...  相似文献   
9.
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.  相似文献   
10.
High-density La0.9-xSrxK0.1MnO3 ceramics (LSKMO, A-site = La, Sr and K, 0 ≤ x ≤ 0.25) are successfully fabricated by using facile sol-gel method. Electrical properties are performed by using combination of phenomenological percolation (PP) model, double exchange (DE) mechanism, and Jahn-Teller (JT) effect. Moreover, X-ray diffraction and scanning electron microscopy are employed to analyze the structure and morphology of LSKMO ceramics. Valence states and ionic stoichiometry are assessed by using X-ray photoemission spectrometry. Results reveal that Sr2+ ions, substituting La3+ ions, significantly influenced DE mechanism and JT effect. In addition, Sr-doping plays essential role in improving electrical properties of LSKMO ceramics. At optimal doping content of x = 0.09, peak temperature coefficient of resistance (TCR) of the resistivity is found to be 11.56% K?1 at 297.15 K, which is optimal TCR for A-site K-occupied perovskite manganese oxides. These results confirm that polycrystalline LSKMO ceramics render high room-temperature TCR values due to Sr-doping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号